find answers to your questions here

Explore our FAQs to get comprehensive and helpful answers to  common questions about our services, processes

The Most Common Questions

Enhance your business’s growth with our comprehensive payments platform, streamlining transactions & unlocking new avenues for expansion.

General Questions

Support Team

You Have Different Questions?

Sociosqu posuere metus molestie risus eleifend velit. Vel aenean massa nec blandit ornare eget bibendu .
How does AI Convert text to video , automatically?
AI uses Natural Language Processing (NLP) to understand text, selects relevant visuals and audio, and then video generation models synthesize them into a cohesive video.
How do you approach solving a new problem with AI?
Solving a new problem with AI involves under standing the problem domain, collecting and preprocessing data, choosing the appropriate model and algorithm
How do you keep up with the rapidly evolving field of AI?
I stay updated by reading research papers and industry news. I also follow AI experts, attend conferences, and engage with AI communities.
What is Artificial Intelligence?
AI is the development of machines that mimic human intelligence. These systems can perform tasks such as learning, reasoning, and problem-solving. AI aims to create machines that can operate autonomously.
What are the types of Artificial Intelligence?
There are three main types: Narrow AI, which is task-specific; General AI, a theoretical AI capable of any task; and Super AI, which would surpass human intelligence but remains hypothetical.
Explain Artificial Intelligence and give its applications.
AI refers to machines simulating human intelligence to perform tasks autonomously, such as speech recognition, autonomous vehicles, personalized recommendations, and medical diagnostics.
How many layers are in a Neural Network?
51-bEgtdnnL._AC_.jpg
A neural network has three main types of layers: input, hidden, and output. Hidden layers vary in number depending on the model’s complexity. Each layer processes the data differently.
What are common data structures used in deep learning?
service-img1
Common data structures include tensors, matrices, and graphs. Tensors are widely used because they store multi-dimensional data, which is essential for training deep learning models.
Explain forward propagation and backpropagation.
Bilgisayar teknik servis ankara evinizde veya iş yerinizde her zaman yanınızda bulunan bilgisayarınız, cep telefonu veya tablet leriniz de meydana gelebilecekAnkara Bilgisayar Tamiri,,bilgisayar tamiri, bilgisayar tamircisi, laptop tamiri, anakart tamiri, bilgisayar hastanesi, notebook tamiri, en yakın bilgisayarcı, laptop batarya tamiri, en yakın bilgisayar tamircisi, laptop menteşe tamiri, avcılar notebook servisi, laptop anakart tamiri, laptop anakart değişimi, laptop servisi, bilgisayarcı en yakın, hp yazıcı servis, avcılar bilgisayar servisi, notebook servisi, klavye tamiri, asus laptop ekran değişimi, asus laptop servisi, laptop menteşe tamiri fiyat, asus laptop tamiri, ekran kartı chipset tamiri, pc tamircisi, notebook servis, asus laptop yetkili servis, laptop adaptör tamiri, lenovo laptop tamiri, asus laptop tamir servisi, bilgisayar tamir servisi, bilgisayarcılar, laptop ekran tamiri, anakart değişimi, hp bilgisayar servis, lenovo laptop ekran değişimi fiyatı, laptop ekran kartı tamiri, lenovo laptop ekran değişimi, bilgisayar anakart tamiri, laptop klavye tamiri, anakart tamiri fiyat, laptop tuş tamiri, ümraniye bilgisayar tamiri, lenovo laptop servisi, toshiba laptop yetkili servis, apple macbook servisi, laptop şarj aleti tamiri, hp laptop servisi, apple macbook servis, lenovo laptop yetkili servis, notebook tamir, hp yazıcı tamiri, hp laptop ekran değişimi fiyatı, macbook pro klavye değişimi, hp laptop ekran değişimi, buca bilgisayar tamiri, avcılar bilgisayar tamiri, hp ekran değişimi, laptop tamiri servisi, pendik bilgisayar servisi, lenovo laptop tamiri servisi, asus bilgisayar servisi, laptop batarya tamiri fiyatları, laptop ekranı kırıldı," title="fan-600x315-1-300x158.png" />
Forward propagation passes input through the network to get an output. Backpropagation adjusts the weights by calculating the loss gradient, improving model accuracy through iterations.